
 
 

 

  

Abstract— A generalized kinematic modeling framework, 
called Mechanism_Model, has been developed for use in the 
CLARAty robotic reusable software. Mechanism_Model 
supports a wide range of systems – from manipulator arms to 
legged and wheeled rovers. It also enables the development of 
generalized kinematics, dynamics and collision detection 
algorithms. In this paper, we describe the unified modeling 
approach used in Mechanism_Model and provide details of its 
object-oriented implementation in C++. We also present an 
example application illustrating use of Mechanism_Model. 

I. INTRODUCTION 

N this paper, we describe progress we have made [5] 
toward a unified modeling and control approach for a wide 
variety of robotics systems. We report on implementation 

details of the modeling software package and applications 
that demonstrate its use. The software, called the 
Mechanism_Model package is being developed within the 
CLARAty software system [17], [9], [10], [3].  CLARAty is 
a collaborative effort among four institutions: Jet Propulsion 
Laboratory, NASA Ames Research Center, Carnegie Mellon, 
and the University of Minnesota. In this section, we first 
motivate the development of Mechanism_Model, describe its 
background and discuss its relevance with respect to related 
work. We then describe, in Section II, the application 
domains that Mechanism_Model is designed to span, the 
features of these domains and the challenges they pose in 
developing a unified modeling approach. In Section III, we 
present the modeling framework used in Mechanism_Model, 
its generic kinematic algorithms and its object-oriented 
implementation. An example application that demonstrates 
the usage of Mechanism_Model is covered in Section IV. 
We conclude with a summary of our development and a 
description of future plans to incorporate it into a generalized 
control paradigm. 

A. CLARAty Software 
 CLARAty is a framework for reusable robotic software. In 
an object-oriented hierarchy, at its lowest level, CLARAty 
implements software abstractions for hardware interfaces. 
Upon this hardware abstraction layer, re-usable software 
components are built to interface to higher levels of control. 
As a result, software that implements complex behaviour and 
sophisticated operations is platform independent. Examples 
of such capabilities implemented in CLARAty include pose 
estimation, navigation, locomotion and planning. In addition 

 
 

to supporting multiple algorithms, CLARAty provides 
adaptations to multiple robotic and rover platforms. 
CLARAty is a domain-specific robotic architecture designed 
with four main objectives: 
1. To promote the reuse of robotic software infrastructure 

across multiple research efforts  
2. To promote the integration of new technologies 

developed by the robotics community onto rover 
platforms  

3. To mature robotic capabilities through reuse and enable 
independent formal validation  

4. To share the development with the robotic community to 
promote rapid advancement and leveraging of 
capabilities  

The infrastructure to support these objectives has been 
developed over several years. This project uses an iterative 
development process that captures lessons learned from the 
deployment of earlier versions of the framework on real and 
simulated platforms.  Through this process, both the design 
of the interfaces and the implementation of generic 
capabilities mature over time. Many elements of CLARAty 
are in their third revisions with improved interfaces to 
actuators and sensors, camera modelling and image 
processing, mechanism modelling, pose estimation, 
navigation and interfaces to higher level planners. We 
describe our efforts in developing CLARAty’s next 
generation mechanism modelling software in this paper. 

B. Motivation and Objectives 
 The motivation for the development of Mechanism_Model 
began with the original need in CLARAty to develop 
kinematic and control algorithms that could be applied with 
minimal change to the range of robotic vehicles used at JPL. 
This goal was successfully accomplished with the 
Wheel_Locomotor module in CLARAty. Wheel_Locomotor 
consists of a set of classes that plan and execute circular 
drive paths for vehicles that are fully-steered, partially-
steered or non-steered (skid-steered) with any number of 
wheels.  The early implementations in CLARAty had a 
separate set of model representations and algorithms for the 
control of manipulator arms on the rovers from those used 
for the control of the vehicle. However, the similarity 
between modeling and control needs for vehicles and the 
manipulator arms led our desire to unify the models and 
algorithms. Based on the premise that the more generic the 
software, the more re-usable it will be, we have attempted to 
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develop a unified framework for handling kinematics and 
control of all articulation on our robotic platforms. 
 There are a number of other advantages to be gained from 
a unified approach for modeling and control for mobility 
systems.  One key benefit to a unified representation is the 
ability to develop more sophisticated algorithms that treat 
appendages as an extension of the mobility enabling greater 
flexibility for manipulating arm/vehicle workspaces.  
Although requiring greater effort to develop, a unified 
implementation results in less management overhead. In a 
software system as large and complex as CLARAty, with a 
variety of application platforms, a streamlined system for 
handling model data and implementation of algorithms that 
automatically configure to the platform can simplify system 
operation and increase its robustness. Additionally, this 
approach: 
• Provides centralized storage for managing model 

information. This includes creation, deletion, update, 
extension and reconfiguration of the mechanical models. 

• Ensures consistency of the model information for use by 
multiple algorithms. This simplifies the integration of 
algorithms into the software architecture. A significant 
benefit from this approach is that generalized algorithms 
can then be written for these systems because all 
mechanisms share a common data structure. 

• Reduces duplication in model representation between 
rover mobility and manipulation software leading to 
reduced model management overhead. 

• Enables the development of generic algorithms for 
forward, inverse, and differential kinematics. In the 
absence of specialized versions, the generic algorithms 
provide out-of-the-box functionality.  

• Supports specific implementations to override generic 
algorithms whenever appropriate for optimal 
performance. 

• Enables the verification of specialized kinematics 
algorithms against their generic counterpart 

C. Related Work 
 Mechanism_Model uses a kinematics and dynamics 
modelling structure similar to the one used in the 
DARTS/Dshell development at JPL [6], [16], [4]. 
DARTS/Dshell and its derived simulators have been used to 
simulate, with high-fidelity, the dynamics of robotic systems 
and spacecraft modeled as flexible mullti-body systems. It 
has also been used for component hardware-in-the-loop 
testing, pre-deployment guidance and control algorithm 
testing and  in stand-alone simulations.   
 The Kinematics and Dynamics Library (KDL)  component 
in the recent software release of Version 1.0 from the Open 
RObot COntrol System [13] project has objectives similar to 
our Mechanism_Model development.  The current release, 
KDL 0.2.1, implements many useful utilities for kinematic 
computations needed in manipulator control. The highest 
level robot model supported in KDL at this time is a serial-
link manipulator. The design approach for the modelling 
mechanisms in KDL is different from the approach we have 
taken with Mechanism_Model. While Mechanism_Model 

breaks down a mechanism model into component bodies and 
multiple DOF joints, KDL models a serial-link chain as 
composed of single DOF joints. KDL does not currently 
have the capability for modelling mobility systems like 
legged and wheeled rovers. 
 The Operational Software Components for Advanced 
Robotics [14], [7], developed by the Robotics Research 
Group at the University of Texas at Austin, provides utilities 
in the form of libraries for performing computations needed 
in analysis, real-time control, and simulation of 
manipulators. In addition to math utilities, it contains 
algorithms for performing generic forward and inverse 
kinematics, motion planning and dynamics. OSCAR offers 
many alternative options in its operations. For example, for 
motion planning, trajectories can be generated using 
trapezoidal, spline or motion blending algorithms. OSCAR 
currently appears to allow only the modeling of serial-chain 
manipulators. OSCAR’s primary application is robotics 
education. While OSCAR provides generic software utilities 
for robot arms (serial-chain manipulators) the approach with 
Mechanism_Model models more general kinematics systems. 
 Other related developments include the RoboML [15], 
ORCA [12], [2] and the Nucleus robotic control toolkit [11].  

II.  APPLICATION DOMAINS AND GOALS 
 The wide range of systems to be addressed with our 
approach present a number of challenges. In the following 
sections, we categorize the types of systems 
Mechanism_Model will support and discuss their unique 
features. 

A. Manipulators 
 Serial-link manipulators are the simplest mechanisms we 
will model in Mechanism_Model. The range of mechanisms 
on rover platforms that can be modeled as serial-link 
manipulators include passively set or actively controlled pan-
and-tilt units for cameras, two degrees-of-freedom (DOF), 
three or four DOF masts arms mounted with navigation 
camera heads and four, five, or six DOF instrument arms. 
These mechanisms are all mounted to mobile rover 
platforms. Instrument arms have the additional kinematic 
feature of typically holding many instruments on a turret at 
its end. In research and flight projects at JPL, serial-link 
manipulators are also deployed from non-mobile lander 
platforms. For example, in addition to a scoop as its end 
effector, the four DOF Mars Phoenix Mars manipulator has a 
camera attached to its lower arm.  It is also desirable that 

          a)                      b)                          c) 
Figure 1.Manipulator examples:  a) Modular arm, b) 
Manipulator-mounted cameras guiding instrument 

placement and c)  Rovers cooperatively transporting a 
beam. 



 
 

 

Mechanism_Model be able to also handle parallel-link (or 
closed-chain) kinematic structures. Examples of 
manipulators used on research projects at JPL are shown on 
Figure 1. 

B. Wheeled Rovers 
 Most wheeled mobility systems for research and flight 
missions at JPL have six wheels and use the passive rocker-
bogie suspension [1]. The rocker-bogie mechanism enforces 
a coupling between the left and right sides in the rocker 
articulation. This may be modeled as a single independent 
joint and a dependent (or constrained) joint with respect to 
the rover chassis.  Rover wheels may be steered or non-
steered. Rocky 7 rover has two steerable wheels. The Mars 
Exploration Rovers (MER) have four steerable wheels while 
Rocky 8 and FIDO have six steerable wheels. The K-10 
rover at the NASA Ames Research Center has a rocker 
mechanism with four steerable wheels and no bogie. At JPL, 
we also use commercial-off-the-shelf (COTS) mobility 
platforms for research applications. These are typically four 
non-steerable wheeled mobility systems with no suspension 
mechanism. Vehicle steering is accomplished using skid-
steering with wheels on opposite sides differentially driven 
to change vehicle heading. Another feature of some of these 
skid-steered rovers is that one controlled motor is used to 
drive both wheels on one side through a belt transmission. 
Figure 2 shows examples of rovers CLARAty has been 
implemented on.  

C. Limbed Mobility Systems 
 Another class of mobility systems at JPL is the limbed 

locomotor. Examples of robots in this category are JPL’s 
LEMUR (Limbed Excursion Mechanical Utility Robots) 
robots [8]. These are four or six limbed systems that can 
walk and climb. The first version of LEMUR has six limbs. 

Its two front limbs have a three-fingered gripper, allowing 
their use as arms. More recent versions of Lemur have limbs 
with interchangeable tools and instruments. The first 
prototype of LEMUR is shown on Figure 3a. 

D. Hybrid Systems – Wheeled Legs 
 The final class of mechanisms we consider is hybrid 
mobility systems that drive on wheels but may also walk on 
limbs or use limbs as manipulators. The ATHLETE (All-
Terrain Hex-Limbed Extra-Terrestrial Explorer) rover at 
JPL [18] has six legs each with six DOF. The legs are 
mounted symmetrically around a hexagonal base. Each leg 
has a wheel at its tip. With its wheel locked, ATHLETE can 
walk using its legs. And on relatively flat terrain, to conserve 
power, ATHLETE can drive on its wheels while using its 
legs as an active suspension system. Figure 3b shows the 
ATHLETE rover climbing a hill. As NASA develops 
innovative mobility systems for exploring steeper and 
rougher terrain, we will see new hybrid mobility systems that 
combine multiple modes of locomotion.  

III.  MODELING AND ALGORITHMIC FRAMEWORK 

A. Design Requirements 
 The primary requirement for the development of 
Mechanism_Model is a unified modeling data structure for 
the variety of mechanisms to allow the interoperability of 
models and algorithms.  Separation of the kinematics and 
dynamics data and algorithms from control software is also 
to be enforced so that model-related algorithms can be run 
independent of physical systems. For greater efficiency in 
real-time control applications, users should have the option 
to override generic algorithms and use customized 
algorithms for specific systems. Customized algorithms, 
however, will use parameters from the common unified 
model. Algorithms to be included in Mechanism_Model are 
forward and inverse position, and velocity kinematics, quasi-
static computations of forces and torques that include models 
of joint flexibility, gravity force and other applied forces, 
gravity deflection, environmental contact constraints and 
collision detection. 

B. Model Framework 
 Using the approach in DARTS/Dshell (Rodriguez, 1991, 
Jain 1991), Mechanism_Model, models elements of 
mechanisms as bodies arranged in a tree structure as 
illustrated on Figure 4. Mechanism_Model bodies represent 
the rigid or flexible components of a mechanism that 
articulate with respect to each other. Articulations are 
modeled as joints. A ground body, representing the inertial 
frame in the system, is at the base of the tree. Component 
bodies have only one parent but may have many child 
bodies. The ground body is the only body without a parent. 

Bodies are rigid in the current implementation of 
Mechanism_Model but may be extended to be flexible. 
Bodies have required kinematic attributes for kinematic 
algorithms and optional inertial, geometric, and visual 
attributes for use in dynamics and collision detection 
algorithms and for graphics display.  

          a)                            b)                          c) 
Figure 2. Rover examples: a) Rocky 8, b) Rocky 7 

and c) ARTV Jr. 

   a)        b) 
Figure 3. Hybrid and limbed system examples: a) 

LEMUR robot, and b)ATHLETE rover. 



 
 

 

 Bodies are connected to each other by joints. Joint 
articulation between pairs of bodies occurs between an 
output frame of the parent body and the reference frame of 
the child body. A joint can have multiple degrees of 
freedom, may be actively controlled or passive, and may be 
constrained to have its articulation state depend on the state 
of another previously defined joint. An example of the use of 
a constrained joint is in modeling the rocker-bogie 
differential with opposite sides having opposite angles. 
Joints have type (1 DOF prismatic, 1 DOF revolute, 6DOF 
spatial, etc.), offset value (zero joint position offset from the 
joint coordinate frame) and home position (joint position at 
robot home position) attributes Joints also have optional 
articulation limits, stiffness and constraint attributes. The 
kinematic relationship between a parent body and a child 
body is specified by the type of joint, its attachment on the 
parent body and the joint articulation state. 
 In Mechanism_Model, frame objects are used to represent 
coordinate frames of interest on bodies. There are two types 
of frame objects: reference frame objects and local frame 
objects. Each body has one reference frame object and may 
have multiple local frame objects. In addition to its type, a 
frame object has the attributes of a homogenous transform 
and a string label. A body’s reference frame object is used to 
specify its nominal (zero joint values) pose with respect to its 
parent. Local frame objects on a body represent the poses of 
coordinate frames of interest on a body with respect to the 
body’s reference frame. 
 The simplest examples we looked at in Section II are 
serial-link manipulators with multiple end effectors or 
multiple manipulators attached to a base. 
Mechanism_Model’s capability for modeling branching 
kinematic chains makes it easy to model these types of 
systems. Wheeled, limbed, and hybrid locomotors, discussed 
in sections II.C., II.D. and II.E of this paper, are modeled by 
inserting a virtual 6 DOF spatial joint between the ground 
body and the locomotor chassis.  The suspensions, legs or 
limbs are then modeled as branches from the chassis body. 

For these examples, spatial constraints between wheel or leg 
and ground are applied to solve for the chassis pose. Parallel 
kinematic structures or closed chain mechanisms can be 
modeled similarly with closure constraints used to specify 
the attachments of the parallel links to ground or the 
mechanism closure respectively. The solution approach will 
use a numerical solver to fully determine the parallel-link 
manipulator end effector pose or closed chain configuration. 

C. Generic Algorithms 
 With this model framework in place, it is possible to 
develop generic kinematic and other algorithms that can be 
re-used for many applications. The most commonly used 
algorithms in robot control are the forward and inverse 
kinematics algorithms. In Mechanism_Model, these 
algorithms are designed to be generalized for the tree 
kinematic structure. The implementation of the forward 
kinematics allows any frame on the tree to query for its pose 
with respect to any another frame on the tree for a given set 
of joint values of the elements in the tree. The generic 
inverse kinematics algorithm is to be written after we 
complete implementing a generic constraint solution 
component of Mechanism_Model. This component will 
allow multiple spatial constraints to be applied at different 
frames on the tree. It will solve for the corresponding joint 
values with a constrained optimization algorithm.  
 Within the same model framework, generic algorithms 
for wheeled locomotors have also been implemented. We 
have implemented flat-terrain forward and inverse 
kinematics algorithms for position and velocity. The position 
and velocity inverse kinematics algorithms compute wheel 
steer and drive distances or drive velocities corresponding to 
a specified body transformation or body velocity 
respectively. The position and velocity forward kinematics 
algorithms compute the reverse; they compute the body pose 
or velocity corresponding to the set of wheel steer and drive 
distances or drive velocities respectively. These algorithms 
are parameterized for the number and locations of wheels 
and for rover type. Supported rover types include fully-
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Figure 4. Tree kinematic structure to 
model mechanisms. 



 
 

 

steered, partially-steered and skid-steered rovers. These 
vehicle kinematics algorithms are being extended to handle 
non-flat terrain and six DOF rover kinematics. 

D. Software Implementation 
 Mechanism_Model is built upon a hierarchy of 
templatized software utility objects that are written in C++. 
These objects include a Standard Template Library (STL)-
like tree, one and two dimensional array, three dimensional 
vector, matrix, and rotation matrix and quaternion based 
homogenous transform classes. Pre-order, post-order, sibling 
and chain iterators are implemented in the Tree class to 
facilitate tree traversal for kinematics algorithms. 
 The Mechanism_Model package is composed of 
Mechanism_Model, ME_Body, ME_Joint and Frame 
classes. A corresponding set of input-output (I/O) classes, 
Mechanism_Model_IO, ME_Body_IO, ME_Joint_IO and 
Frame_IO, are used to read and write model data from and to 
XML [19] model files. The constraint optimization 
component of Mechanism_Model includes 
Constraint_Manager, Constraint_Solver, 
Cartesian_Constraint, Contact_Constraint, and 
End_Effector_Constraint classes. The constraint solution 
component of Mechanism_Model has been designed and will 
be implemented in the next stage of development. The 
relationship between these classes is shown on the UML 
diagram on Figure 5.  

IV.  APPLICATION 
 We developed several example applications to validate 
this approach and illustrate the use of Mechanism_Model. A 
simple 2 DOF planar manipulator is described here to show 
how a model is created and used with Mechanism_Model. 
There are two ways to create this model. The model can be 
created using manually entered lines of code. Alternatively, a 
model can be read in from an XML model file. In our 
example, the two links of the arm are each 1.0 meter long. 
The two joints of the arm rotate about the Z-axis.  In its 
nominal configuration with its joints at 0 radians, the arm is 
aligned along the X-axis.  

 A new class, N_2DOF_Planar_Arm was derived from 
Mechanism_Model to demonstrate the implementation of a 
customized inverse kinematics algorithm. The code below 
shows how the two-link planar manipulator is created in 
N_2DOF_Planar_Arm. 
 

   N_2DOF_Planar_Arm arm; 
 

   // Create the first link 
 ME_Body link1("link1", arm); 
   link1.create_frame("ref1"); 
   link1.get_joint().set_type("revolute"); 
   link1.get_joint().set_joint_axes( 
  Vector3<double>(0.0, 0.0, 1.0)); 
 

   // Create the second link and attach to link1 
 ME_Body link2("link2", arm, "link1"); 
   Frame & link2_ref_frame =  
  link2.create_frame("ref2"); 
    

 link2_ref_frame.set( 
   Transform(Vector3<double>(1.0,0.0,0.0))); 
   link2.get_joint().set_type("revolute"); 
   link2.get_joint().set_joint_axes( 
  Vector3<double>(0.0, 0.0, 1.0)); 
 

 // Create a local frame at the tip    
 Frame & link2_tip_frame =  
  link2.create_frame("tip"); 
   link2_tip_frame.set( 
   Transform(Vector3<double>(1.0,0.0,0.0))); 
 

   arm.initialize(); 
 

A model can, alternatively, be created by reading in the 
XML model file shown on Figure 6 as follows: 
 N_2DOF_Planar_Arm arm("2dof_planar_arm.xml"); 

To perform the forward kinematics for a given set of joint 
angles, we first set the arm joint angles, then query for the tip 
position:  
 arm.get_joint(0).set_value(M_PI_2); 
 arm.get_joint(1).set_value(0); 
 
 Transform tip_position =          
 arm.get_body("link2").get_frame( 
   "tip").get_absolute_transform(); 

Figure 5. Mechanism_Model: class relationships. 
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To perform the inverse kinematics is just as easy. We 
first specify a desired tip location then query for the 
corresponding arm configuration.  
 Vector<Vector<double>> joint_values; 
 

 Vector2<double> tip(1.0,1.0); 
 

 arm.inverse_kinematics(tip,joint_values); 

The two sets of possible results are contained in the 2-D 
vector of 2-D vectors.  

V. CONCLUSION 
 The Mechanism_Model framework has been successfully 
used to model the following manipulator arms and rover 
vehicles: 1) Two-dof planar manipulator, 2) Three-dof 
modeled with DH parameters, 4) Two-dof Rocky8 mast 
camera arm, 5) Four-dof Rocky8 mast camera arm, 6) Five-
dof Rocky8 instrument arm, 7) FIDO rover with rocker-
bogey suspension kinematics, 8) Rocky8 rover with rocker-
bogey suspension kinematics, and 9) Rocky8 rover 
kinematics with a 5-dof manipulator arm. We are continuing 
its development in a couple of directions. Mechanism_Model 
is about to be interfaced to a new generalized trajectory 
generation and path planning module and a new generalized 
control module.  
 Also in the next stage of development, the constrained 
solution components of Mechanism_Model will be 
implemented. An iterative constrained optimization 
algorithm will be used to solve for multiple constraints 
acting simultaneously on frames in the model. This 
generalized approach will be useful for many applications 
including solving the inverse kinematics of manipulator arms 
and allow positioning an end effector at a desired pose, 
determining legs placement configuration for a walking 

machine and determining suspension compliance in a 
rover with wheels. 
 With the integration of these components in 
CLARAty, we will be able to deploy a complete control 
software package for any of the platforms listed in 
Section II by merely reading in the system XML 
configuration files. We expect to see significant 
reduction in the time it requires to develop control 
software for robotic platforms with this capability. By 
end of May 2007, a pilot version of the software 
described in this paper will be released with the 
CLARAty public release.  
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Figure 6. 2dof_planar_arm.xml XML input file for 
a 2 dof planar manipulator. 

<Mechanism_Model name = "2dof_planar_arm" version = "1.0"> 
<!-- This body is first link --> 
  <ME_Body name= "link1" > 
     <ME_Joint name = "joint1" type = "revolute" 
               x_axis = "0"y_axis = "0" z_axis = "1"> 
     </ME_Joint>  
      <Frame name="ref1" type="reference"> 
        <Transform> 
         <Position x="0" y="0" z="0" /> 
         <Quaternion qi="0" qj="0" qk="0"qs="1" /> 
        </Transform> 
     </Frame> 
  </ME_Body> 
  
<!-- This body is second link --> 
  <ME_Body  name= "link2" parent = "link1" > 
    <ME_Joint name = "joint2" type = "revolute" 
              x_axis = "0"y_axis = "0" z_axis = "1"> 
   </ME_Joint>  
      <Frame name="ref2" type="reference"> 
       <Transform> 
          <Position x="1"y="0" z="0" /> 
         <Quaternion qi="0" qj="0" qk="0"qs="1" /> 
        </Transform> 
     </Frame> 
      <Frame name="tip" type="local"> 
        <Transform> 
         <Position x="1" y="0" z="0" /> 
         <Quaternion qi="0.0" qj="0" qk="0"qs="1.0" /> 
        </Transform> 
     </Frame> 
  </ME_Body> 
</Mechanism_Model> 


